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1. Introduction. 

owe say recently(') that it is possible to interpret the 

General Relativity theory, the non-symmetric theory (21 and the 

unification of K. Borchsenius (3) as being performed upon algebras 

that follow the Hurwitz theorem, namely: the real algebra for General 

Relativity, the complex algebra for the non-symmetric theory and the 

quaternion algebra for the Borchsenius theory. We obtain from 

there, the final generali z 

algebra. We then conclude 

field equations obtained 

forms when we go from rea 

ation for‘a theory using the octonion 

that formally the geometrical objects and 

n each algebra maintain essentially their 

algebra to the octonions. In the same 

manner, we will see that it is possible to construct (local) tangent 

spaces to curved space-time, corresponding to each of the above 

algebra and that again, the geometrical objects and field equations 

maintain their forms when we go from IR to 0.' On the other hand, we 

must observe that the geometrical objects in these tangent spaces 

are more deepiy affected by. the presence of internal space (that 

follows the IR, It, Q and 0 algebra) than that of curved space-time, 

this because of the manner in which are defined the tangent vectors 

on each point of the curved space-time. 

In sections 2, 3 and 4 we study the 

'ical objects in the-tangent space assoc 

properties of 

geometr iated to the complex, 

quaternionic and octonionic algebra. Also, we obtain there the 

corresponding field equations to that obtained in the reference 

(1). In section 5 we finally consider some properties about the 

transformation law in this tangent space, associated to quaternionic 

and octonionic internal spaces. We then show how it is possible 

to relate them to the electromagnetic and Yang-Mills fields. 



2. The complex tangent-space. 3 

According to the correspondence principle, there exists 

in each point of curved space-time a local tangent space with the 

structure of a flat space-time, with metric given by the 

Minkowski tensor nab. By the symmetry property of the metric of 

General Relativity; the line element is given by 

ds2 = g,, dxu dx" = nab dxa dxb , where g 
vu = 4,, . The geometrical 

properties of this tangent space is described in literature (4) and 

it is easy to conclude that it follows the real numbers algebra and 

by this will be referred here as a.real tangent space. 

In the Einstein non-symmetric theory (or in the Moffat- 

@oal theory(5) ) the metric of curved space-time is no longer 

symmetric and real, but has the property gEv = g,,,. If we now 

define, 

9 = e *a eb 
PV v II nab ' (2.1) 

where the objects ei are now complex vierbeins, i:e will have for 

the line element, 

ds2 = dxP dx" g,, = dx*a dxb 
nab (2.2) 

The metric of tangent space is again determined by the Minkowski tensor, 

nab. Therefore, in (2.2), 

dxa = e z dxP , dx*a = e*E dx' . (2.3) 

There exists an inverse gP'" such that g'" g,, = 6: , in this 

order of indexes. !.Ie have from (2.1), 

9 
11~ = ebb ev ab 

a b' ' (~2.4) 



where el is the inverse of ea . Then, we obtain the following 
4 

P 

orthogonallity conditions for complex veirbeins: 

e*a P = ea 
peb 

*II = 6a 
ueb b ' 

(2.5) 

*a 
e ei 

a 
=e e *v = &V 

lJ v a I! 

The transformation law for vectors e: in the complex tangent 

space is defined by: 

“z (‘) = Lab (x) e: (xl , e*‘; (X) = L*ab (x) e*; (x) , 

a 
(2.6) 

where L b are pseudo-unitary rotation matrices, i.e., 

L+ nL=n. (2.7) 

The interval covariant derivative of the vectors e; 

is given by: 

ea 
a 

u II"= eP.Y 
b 

+ nvab e 
P ' (2.8) 

where now, the affinity A" is complex. Its internal transformation 

law is: 

A’u = L hP L-1 - L,V L-l , n*; = L* ‘4; L*-T - L*,n L 
*-1 

. 

(2.9) 

One of Einstein field equations for the case of non- 

symmetric theory obtained through a variational principle, is 

4 
yH 

ia=o, where the Schroedinger connection for the curved 

space-time wa 

a non-symmetr 

0 *P = g 
Pa au 

s used, 0' , 0 = gp 
!Ju P 

tp 
= 0. (In general, opMa is 

ic affinity for which it is valid the property 

.) This equation along with (2.1), implies in the 



equations for the vierbeins: 5 

+ 

e 
*a. 

u/a 
= e *a _ @P 

p'ta 
e*a +(iJaab e*L = 0 . 

a11 P 

(2.10) 

Therefore, in order to have only one independent equation ,in (2.10). 
(1) 

the affinity A 
(2) 

v 
is the,complex of the affinity n 

P 
, since then, 

ea* dir = (e *~i~)=O . 

+ 

(2.11) 

Taking the inverse equation SK, = 0 s we have the corresponding 

equations for the vierbeins: 

l P 
e +y 

a/a 
e*’ 

a,a 
+ l3p e*p-hb ,g*b 

pa a da U 
= 0.~ (2.12) 

From (2.11) and (2.12 1 , we obtain the relation: 

*a Zi’U ~a e ab= u 
e+. =-e -*p 

b;a v:aeb * 
+' 

(2.13) 

In the case of real tetrads, we re-obtain the results of General 

Relativity for the tangent space associated to the Riemann geometry. 

We must also have: 
'abllu 

= 0, where we must have in 

mind that the "minus" sign correstonds to the complex conjugate 

of the affinity hu , because of (2.11): 

"~.a[\~ = 'ab,p - 'pea 
* c 

'c b 
- A 

p b 'ac 
=o . (2.14) 

nab lowers indexes, and we have therefore that A is anti-Hermitian 
!J 

with respect to index of the tangent space. This results in the 

equality: 



A u ab 
= A 

v a,b 
+iA 

P a_b ’ 
(2.15) 6 

Calculating the difference eF,Vy - e; yy , we obtain 
2 

the equality: 

RP ea - SvYab e: = 0 , 
JJ"-l P 

(2.16) 

where RP is the curvature in the non-Riemannian space-time, 
PVY 

written in terms of non-symmetric affinity, and Syyab is the 

curvature in the complex tangent space: 

s = A - A - 
VY v ,y y ,v 

A,,," (2.17) 

S 
-JY 

is antissymmetric in the world indexes and anti-Hermitian in 

the internal indexes. Therefore, this implies that it must be 

written in the form: 

s vyab = s 
wayb 

+ i S vya_b ' 
(2.18) 

With this we complete the resumed geometrical treatment 

of the complex tangent space. We will see in the following a similar- 

treatment for the case of quaternionic and octonionic tangent spaces. 

3. The quaternionic tanqent space. 

In the Borchsenius theory (3) , we deal with a vector 

space with representation via Pauli matrices. This vector space 

can be reinterpreted as quaternions if we take i-'o;, wY, , i = 1,2,3, 

'i 
being the Pauli matrices and wi quaternions, ~;.e., they satisfy 

the relations 



wi wj = ‘ijk % 
-6..wo , 

1J (3.1) 

where wo, is the unity element of quaternions algebra. wo = od . 

The "metric" in this matrix, or quaternionic. space-time, has the 

symmetry property, 

G+ G pY= ")I ' c3.2) 

wh~ich generalises the conditions used~for g 
)1v . 

The Hermitian 

conjugation operation is carried out over the quaternionic internal 

space, ou Q-space. Let it be then, 

G = Et: E; 
PV nab ' 

where E 
a 
u 

are quaternionic vierbeins, 

Ea = ka 
11 ~ 

0 
C%) wg + k~, (.x) Wi , 

1 

Eta = k*a 
u ho (x) w. - k*Ei (x) wi . 

(3.3) 

(3.4) 

According to correspondence principle, the line element in the 

quaternionic space-time and in the quaternionic tangent space 

obtained with the vierbeins (3.4) is defined as: 

ds2 = i Tr (GPv dx' dx") = ; Ty (nab dx +a dxb) , (3.5) 

where for simplicity sake and principally aiming to physical 

interpretation, ue take the metric in Q-tangent space with 

Minkowski'S structure nab. From (3.2) and (3.4), we have: 

dxa = E; dxP , dxc ta = Efa dX~ 
u (3.6) 



8 
There exists an inverse Gu" such that, Gud G'v = GYM Gall = 6: wo . 

We define then, 

G w = E+l' E; ,,ab 
a 

, (3.7) 

and from that, Ne obtain the corresponding orthogonality relations 

for the Q-vierbeins: 

Eb E~+)1 = 
11 ,c 

EL Eig = 6; wo 

(3.9) 

E Ta Eu = E+v 
a 

a Ea = 6; w 
a 0 

The transformation law of tangent vectors Et(x) in Q-tangent space 

is: 

EiUa (x) = ILab (x) E; (x) 

ILab is therefore a quaternion: 

(3.9) 

Lab = Lab (x) w. + Lab (x) wi (~3.10) 
0 i 

In (3.9) and (3.10) we are maintaining the quaternions space fixed. 

Lab 
are then (quate,rnionic) rotation matrices in the Q-tangent 

space. For the invariance under IL-transformation of the line 

element ds2, we must have the relation: 

B 
+a 

c nab lLbd = ncd w. . (~3.11) 

Again, ihe Hermitian conjugation operation being carried out in the 

Q-space, 

,L+a 
b 

= L* a 
o b w. 

- L*iab wi . 



We can define on the Q-tangent space, the operation 9 

of covariant differentiation, as exanple,,for a vector 

E = (El ,...,, 2;). We have. 

EU a ,,y (xl = a\, '", (xl - Avba E; (xl 

The affinity "vab is in general a quaternion, 

A a = Avab u b w. t ““abe wi (3.13) 
0 1 

As in the case of the metric on the Q-tangent space, lie impose on 

the affinity A.+ the condition 

h a 5 Avab w. . 
u b 

(3.14) 

Again, the reason for this restriction aims to a possible physical 

interpretation of this object. 

The derivative (3.12) is such that E", ,v transforms 

as a vector in the Q-tangent space. The transformation law for the 

affinity Av nust theh. be: 

Al” = IL Av IL-' - R,v IL-' (3.15) 

where IL-' is the inverse matrix with respect to the a,b,... 

Indexes on the Q-tangent space. 

According to the properties of the objects EI (xl. we 

may have a total covariant derivative: 

E: =a 
a/v " 

'1 + nU 
PY 

E;. - nvCa '; + [ r/E," ] , (3.16) 



where rv =- v . w z + is the affinity in the quaternionic internal lo 

spate(6) (with real TV),, and np w 
P" 0 

is the non-symmetric 

affinity of curved space-time. 

K. Borchsenius showed that one of the field equations 

(7) obtained in his unified theory. through a variational principle 

is: G ' 
yvl" 

= 0, (hits inverse: GUY. 
t-jil = 0) in matrix or quaternionic 

notation, In this case the Schroedinger connection for the curved 

space-time was used, 

RP = QP 2 6” a 
P” pv-5 p ” ’ “v c sip 

““P . (3.17) 

Here o'Pv is the Schroedinger connection. We can obtain similar 

expressions for the Q-vierbeins. This is given in the following 

table: 

G ' pvlu = 0, - 
Bta. = (Ea. ) = o (3.18) 

t- "I" $a 

E 
a. Ea 
ulu = !A,0 

- E; rPlia + AaaC E:.= G , 

+ 

trp =Qp w +6'r QP = Schroed 
PU P" 0 u a !Ja 

inger 
connect ,ion 

I AdaC = AUac WP t 6; rd r a = Ed . I: = - r; . 

Gi1). 
Ia 

=o. - EtU +. = ('iid) = 0 (3.19) 

a/a 

E!' : E" + EP ktu 
ala a,a a Pa 

- AtaC a E; = 0 , 
. 

r.tlJ =Q" w -6'r , because Q*p = QP 
PY YP 0 P Y PY YP 

A+ a = A *a 
Y b y b wP 

a r 
-6b Y . -- 



Again we must have here, 
11 

tnab ,wo) ,ly = (- AyCa nCb - h* ’ y bnac 
) W. ii 0 , (3.20) 

+- 

since, from (3.181, the "glus" sign correspond to the affinity AY 

and the "minus" sign to A*T , as the covariant derivative index 

is concerned. As nab lowers indexes, we have by (3.20) that 

A = 
Y (A vab) is anti-Hermitian. In the~same way as in (2.15), to 

make this result true we must have for the affinity of the 

quaternionic tangent space: 

A 
Tab = 

h Tab *o = (A Y ap 
tih )U 

Tab o ' 
(3.21) 

We can obtain an expression for Ayab from (3.19), 

in the table above, namely: 

Wa 
Y b 

= E; E+"b,y + E; [rUpY ""b , 

(3.22) 

= Ea Et: + Ea r EtU 
u biy PY b 

and another,from (3.18): 

Aa =-E;y 
Y b 

Et: + Ez rp E+u 
, PY b ' 

(3.23) 

= - E& o ~ ry Et; Et" + Ea 

+ 

The expression for the curvature on the quaternionic 

tangent space can be obtained from the comutator of total covariant 

derivatives. This give us: 

E; Rp -S a EC=0 , 
P”Y "YC 11 

(3.24) 



.where Rp is the total curvature (8) 
N”Y 

, written with the "affinities" 

rp 
U" 

, and S 
"-I 

is the total curvature on the Q-tangent space. 

written for the "affinities" M , 

s a = (A",y - my," --'I ,A 
"Y c y Jac ' 

(3.25) 

= s a 
vy c wo + 6 

a 
cpvy ' 

where S 
"Y 

is the curvature written with the affinities hv and 

P 
“Y 

is the Q-curvature('), written for the Q-affinities, ry . 

4. The octonionic tangent space. 

Again we will take here the split octonions algebra (101 

because of its convenience for a possible physical interpretation. 

Another advantage when we take the split Q-algebra is its isomorphism 

with the Zorn matrix algebra (11). Therefore, an octonion P is 

written in the split Q-algebra as, 

* * 
P=au o+b~o- nku k+mk~k, k = 1,2,3 , (4.1) 

where {Use , ;*, u. , ; ) is the split O-base, and 

a -ii 

+ 
m b 1 ' 

(4.2) 

ation of P by means of a Zorn matrix. ile will take 

a representation of this algebra by means of the use of the Pauli 

matrices, as in the case of quaternions defined in (3.1). In this 

way, 

z (P) = 

is the represent 



1 1.W 

2 ("*,) = O 
O2 

02 02 

\ 

i 

o2 - 1.: 
z (;i*) = 

O2 02 i 

I 
, z (u,) = 

I 

(We, z) defined in Section-3. 

. z (u) = 

13 

The octonionic conjugation of P is defined as 

: = b Use 
* 

+ a u. - nk u k - mk uk (4.4) 

and the Hermitian conjugation of P is defined as(12) 

pt = p* 
* * * 

= b* " o + a u. - n*k U k - m*k Uk (4.5) 

Due to the isomorphism of the split O-algebra with the Zorn matrices 

algebra, we will not differentiate from now on, its designations. 

The O-"metric" is written as: 

6 ~” (x) = 
s!JYo w. - swJk Wk 

= b 
!J” (s,r). (4.5) 

Taking(13) rUv = sUv = g,? + ii FUy , g,, being the symmetric 
0 0 " 

metric and Fpv the Maxwell tensor, we have the symmetry property, 
Y 

G+w (s,r) = 6up (s.r) . (4.7) 

The quaternionic vierbein (3.4) is generalized to the octonionic 

vierbein, or O-vierbein, as: 

ka w 
PO 0 

HE (x) = 

-k;.ui 
1 

= H", (k,e) 

9. 
pi wi 

Ia o. 
u. 

(4.5) 



Let it be then, 

6 
PV 

= H+; HE nab 

14 

(4.9) 

where nab 
is the Minkowski tensor. There exists an inverse of 6U,, : 

6 lly = "'1 H; ,, ab 
(4.10) 

such that, 

6 ~iu (s,r) 6"" (s,r) = 6"' (s,y) 6-aP (s,p) = 6: (u. + u o , * 1 (4.11) 

in this order. We can obtain from (4.9), (4.10), and (4.11) the 

orthogonality relations for O-vierbeins. Then, 

H; H +; = "; H'; = 6; (U. + U*o) , 

(4.12) 

Hta H" = Htv 
a a 

a Ha ~6; (u. + "*o). .~. 
a 

The above relations are such that the following trace is true: 

Tr (Gus 6'") = Tr [(H": HE, (H+; Hi, nab n 
cd 

i 

where the position of the parenthesis is no longer important, if the 

objects are fixed in their positions. 

The line element in the Q-space-time and in the space 

of u-vierbeins is: 

ds2 = i Tr (dxu dx" 6Pv) = ; Tr (dx'a dxb "ab ] , (4.13) 

due to the definition (4.9). Again we are taking the metric on the 

tangent space as being that of Ninkowski. We have therefore, 



dxa = H; dx' , data = H'; dx'. (4.14) I5 

The transformation law of the tangent vector HE in the octonionic 

tangent space is 

H'; (x) = Lab (x) H; (x) , 

where L aj, cx) is now an octonion: 

(4.15) 

Lab 
(X) = nab 

0 
(x) u*. + nab (x) u*i + mab (x) u. + mab cx) 'i 

i 0 i 

(4.16) 

In the above expressions, we are maintaining the internal space of 

octonions fixed. ILab are octonionic rotation "matrices" in the 

octonionic tangent space. The invariance under IL-transformation of 

the line element gives the relation: 

Lta c nab 
Lbd = “rdcuo + ‘*O) ’ (4.17) 

where 

e +a *a * =m b uo-n *a * b.ui+n 
*a *a 

b 1 
b uo-m b,ui. 

0 0 1 

The derivative over the O-tangent space of tangent 

vectors H," (x), for instance, is defined by 

HP a,,v (x) = av Hg (x) - ova, (x) H: (x) , (4.18) 

where again we restrict the affinity Av to be proportional to the 

unity element of the algebra: 

Aa Y b = qvab (u. + u*o) . 

The total derivative is given then by: 

(4.19) 



1 , (4.20) 

16 

where r ~ is now the affinity in the internal octonionic space, 

r” =-[;:f - ig , (4.21) 

with i and 
" % 

real, like in quaternionic case. 

The transformation law of the affinity A on the " 

O-tangent space is given now by 

hlv (x) = II A” IL-’ - e ,v L-1 ( 

where 

(4.22) 

IL -i -1 * = n o u o + n-ii Use F m-lo u. + m-ii ui 3 

is the inverse of L with relation to the indexes on the tangent 

space. 

One of the field equations obtained through a variational~ 

principle in the generalized octonionic theory ('I is: G ' 0 pv/a = 

(its inverse is: GiYia = 0). Using (4.9) and (4.10) we zbtain the 

corresponding equations for the octonionic vierbeins, which we write 

in the following table: 

6 ' 
pvla 

=o, c_ Hta. 

+- llla 
= (H;ja)+ = 0 (4.23) 

+ 

H a. 
PIa I 

= H; a _ "; rp 
!la 

+ Aaac ~HC = 0 , 
u 

c 

kP = ep (u. + u 
Pa Pa 

*o) c 6: ra , Opus = Sz;;;;:;n;;r 
, 

Aaac = qaac (U. l Use) + 6; LCa , k-‘a = ia. ;‘* + 2,. ;r 

J 

G11+y_. 
,Iu 

= 0 - Hi:; 
ala 

= (Hii=)T = 0 (4.24) 



i 
,,!: = Hl a t H", rtpPu - ntaca HF = 0 

a(a , 
, 

rtp = 0 *P 
Pa Pa 

(u. + u*o) - 6; ra 

I 
A+a = *a 

a c q. c (u. + u*o) - 6; ra * 

17 

Considering that again, 

Q cue + ” 0 * )] ,,y= (-AyCa ncb y AtCb nac) (u. + Use)’ = 0 , (4.25) 

the affinity A = (Ayab) continues being anti-Hermitian, which 
Y 

result, 

A yab = qyab (u. + "*o) = (qyab + i qyab) cue + '*o) . (4.26) 
" 

From (4.23) and (2.24) in the above table, we obtain for 

the octonionic "affinity" hy , rhe expressions, 

ha =-Ha 
Y b 

H+; t (H; rPPy) H+; - i AyaC , H; H+p 
PrY b" 

(4.27) 

and 

Qa 
Y b 

= H; H+; + Hz (rPUy H+g) t { AyCb , Ht , HtF 1 . (4.28) 
3-f 

Me define now, the objects, 

IRA 
A 

PVY 
= rAVU y - rxVY v + r py rp,,V - rhpv rppY (4.29) 

, 

and 

s a VY b : A a ‘i b,v - na Y b,v - Av , A (4.30) 



as being the 0-'curvatures" of Q-space-time, written with the 18 

O-"affinities', r'uv , and of o-tangent space, written with the 

@-"affinities", Ayab , respectively. These are such that the 

following expression are true: 

H; RhVyy - Svvac HE 1 =o , 

obtained from the trace of the curl (a a - av ay) H; = 0 . 
Y " 

The "curvature' SvT may be written as, 

s a 
VY c 

= s a (u. + u*o) t 6; Pvy I 
VY c 

(4.31) 

where S a 
VY c 

is the curvature written in terms of affinities hv , 

and IP is the Q-curvature(17), ' wrltten with the Q-affinities, 
UY 

r 
v . 

Thus the above analysis completes the geometrical 

treatment of tangent spaces on-the quaternionic and octonionic 

algebra. In the Table I are resumed the principal geometrical objects 

obtained in the above calculations, where we can observe that these 

maintain essentially their form when we go from real tangent space 

to the complex one, and from there, to the quaternions and octonions, 

the last one being a a non-associative algebra. In the 

next section we will analyse the possible physical considerations 

about these spaces. 

S. Physical considerations about the transfOrmatiGn law in a tancenL 

space associated to quaternlonic and octonionic internal soaces. 

In the General Relativity if we consider a Yector in the 

a 
vierbein space, namely, V , its transformation law is given by: 



V Ia = L ab Vb (5.1) 19 

where L = (Lab) is the transformation matrix which characterize 

local rotations in the vierbein space (SO(3,l)). Under an 

infinitesimal transformation of first order, the expansion of L 

is given by 

L=I+E, L-1 z 1 - E , (5.2) 

where the E = E (x) matrices are antisymmetric and are characteristic 

of an infinitesimal rotation. 

We saw in Section-2 that the transformation matrix, L, 

for the non-symmetric theory is complex. Therefore, under an 

infinitesimal transformation we have in this case, 

L=ll+e+i~ , L-1 ; I-e-in , (5.3) 

where E = E(X) are infinitesimal rotation matrices and P = u(x) 

are symmetric infinitesimal matrices and must be related with 

electromagnetism. These last ones can be written as: 

Pab = (a + 11; ty ilab . (5.4) 

where a is a symmetric trace free matrix. If we consider a 

particular transformation, 

L= llti -+ , K=trn. (5.5) 

the affinity A a of the non-symmetric theory is transformed as: 

A' Zh/$K 
a ,o. (5.6) 



tr A' GtrA -iK 
,a (1 .a * (5.7) 20 

which is similar to the gauge transformation of an electromagnetic 

potential. In the same way, the complex part on non-symmetric 

curvature S 
Ilv' 

given in (2.17). will therefore, be related to the 

Maxwell electromagnetic field tensor. 

On the quaternionic tangent space the transformation 

law of connection A y is given by (3.15). In terms of components 

it is written as: 

“‘v = Lo Av L,l - Li Av Li-l - (LO," Lo-l - Li,V Li-l) , (5.8) 

plus the condition: 

Lo A" Lk-1 + Lk A" Lo-l + 'ijk 
Li Av Lj-' t 

Under an infinitesimal transformation of f 

the component Lo will have an expressiom 

(5.9) 

j-1) = 0 

rst order of IL = L w o o + L.O. ) 1 1 

similar to (5.3), of the 

type of non-symmetric theory, while the expansion of Li is easily 

obtained when we consider that we must have, equivalently, in the 

quaternionic tangent space, the condition: 

5 5-l = IL-1 5 = Dwo , 11 = (6;) 

In terms of componentes this is written as: 

(5.10) 

Lo Lo-l - Li Li-l = L -l L - L -l 
0 0 i Li=P, (5.11) 

plus the condition: 

Lo Lk-' + Lk Lo-' + 'ijk 
Li Lj-l = Lo-l Lk + Lk-l Lo t Eijk Li -1 

Lj =o. 

(5.12) 
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Li g (niab) . L -1 ; 
i - (qiab) (5.13) 

where met~ric ni = ni(x) are infinitesimal. 

The equation for the transformation law of A" in the quaternionic 

tangent space, in first order, is then: 

A'\, z Av - A\, , E t in 
I 

+ (E + iv),, 

like in non-symmetric theory, plus the condition: 

(5.14) 

1 A” I n’i I + qi ” = 0 . (5.15) 

The solution of (5.15) is obtained expanding qi(x) and Au (x) in 

power series of x" , 

qi (‘) = qi (O) + ‘” ~“i (0) I 

(5.16) 

Av (X) = Ay (0) + X" Sav (0) . 

Replacing (5.16) in (5.15), we obtain: 

m,i (‘) = - Au (0) I ‘7i 

S c(” (0). “i (‘)I = - [ Au (0)~ +&‘)] = - [~y(o)>[hu(ohi(~)]] . 

(5.17) 

['my ('), ~Bi (')I = [',v (O), [ ',(O), qi (')I ] = O 

The solution of (5.15) is then: 

qi (x) = ni (0) - x” A” CO), ni (0) . 
1 

(5.18) 
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where '?i (O) is a constant infinitesimal matrix with the 

restrictions (5.17). In a first order, ni (0) characterizes an 

interference in the transformation law of the type of non-symmetric 

theory, described by Lo , because of association with the 

quaternionic internal space, having therefore, origin in the Yang- 

Mills fields. When we consider the curvature (3.25), S is 
"(I 

related as before, with gravitation and electromagnetism, while 

P "a ' 
the quaternionic internal curvature, is proportional to the 

YangrMills field, 7 
%!a 

In terms 0 ,f components, the transformation law for 

octonionic hv , (4.22 1, is writtenas: 

A'\, = ' rn A n -' + mo A\, m -' - (n 
7Lo v 0 0 n -' 0.v 0 - n. ,," mi-') + 

(5.19) 

-1 -1 
- ni 'v mi - mi Av ni - (m m -' - mi y ni-')I , 

0.v 0 s 

along with the conditions: 

n o "v "k 
-' + n 

k 'v m. 
-1 

+ cijk 
-1 

mi A; mj ~+ 

- (n "k -' + n m -' 
O,V k,v o + 'ijk mi,v mj -1) = 0 , 

(5.20) 

'v mk 
-' + m -1 -1 

mO 
k Av no +cijk ni Av nj + 

- (mo,Y mk-’ + mk,v no 
-1 

' 'ijk "i,v 
nj) = 0 . 

Again, ~,e must have for transformation matrices in the octonionic 

tangent *pace 

IL IL 
-1 = il-' h = A (u. + u*o) , II = (6;) , (5.21) 
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where L is given in (4.16). which gives in terms of components: 

-1 + m 
0 m. 

-1 - n ..-1 - m 
i I i 

ni-') = 

(5.22) 

= i (no -' n 
-1 

o + m. m. - ni 
-1 -1 

mi 
- mi nil = II I 1 = (6;) , 

plus the conditions: 

n 
o "k 

-1 
+ "k "o 

-1 
' 'ijk mi mj 

-1 
= mo mk 

-1 1 
+ mknor cijk'ni nj -1 E 

(5.23) 

q n 
-1 -1 

0 
nk + nk m. + cijk mjlmj =-rni' mk + mi' no + 'ijk nf1 nj =o. 

This means that we must have o,nce more the matrices no and mo of 

the type Lo of the non-symmetric theory, and i& and 6 being 

the "interference" due to-,the association of tangent space of tetrads 

with the octonionic internal space. 

Ue will take.here, looking for a more objective physical 

interpretation, m, = no = Lo of the no,n-symmetric theory. Therefore, 

in an infinitesimal expansion of first order of octonionic IL, we 

have: 

-1 n 
"o= 0 

= Lo Ill+c+iu , Lo 2 1, - E-ip , (5.24) 

and, 

mi = (a.” ) , 
I b mi 

-1 ; - ('jab) S 

(5.25) 

ni z (f3.a ) , I b ni -1 : 
- (Biab) . 

ai 
and e.i are infinitesimal matrices such that in the limit 

ai + Bi we re obtain the quaternionic case. 
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Again therefore,the transformation law of A,,. of the 

type of (5.5). in the octonionic tangent space, is related with 

transformat~ion of electromagnetic gauge. The "interference", in 

first order, being given by the equations: 

In I... Z-0, L v' aij 1 ,v 
(5.26) 

[n”. Bi] + ai,y r 0 , (5.27) 

,,here (5.24) was considered. We conclude then, from (5.26) and (5.27), 

that in first crder, the "interference" ii at?d 6i , because of the 

presence of ttie octonionic internal space, are at least proportional 

and of the Yang-Mills type, in this case. (We must remember that we 

are dealing with a split octonionic alg.bra.) With regard to the 

curvature (4.31), once again Svy is related to gravitation and 

electromagnetism, decause it consists of the non-symmetric part of 

the theory, while IP 
VY ' 

the internal octonionic curvature, is of 

the type of Yang-Mills field, being however, of two types. 
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